ETL

Tabla de contenidos

Resumir con:

Un proceso ETL (Extract, Transform, Load) es una técnica que se utiliza para integrar datos de diferentes fuentes y transformarlos en un formato común para su análisis y uso en sistemas de información empresarial.

La finalidad de los procesos ETL es conseguir una visión global y cohesiva de los datos en beneficio de la visión estratégica y rentabilidad de las empresas.

Fases de un proceso ETL

Un proceso ETL es un flujo de trabajo que comprende tres fases principales: la extracción de datos de fuentes heterogéneas, la transformación de los mismos para hacerlos compatibles y la carga en un sistema de almacenamiento centralizado.

La fase de extracción marca el inicio del proceso ETL. En esta etapa, se recopilan datos de diversas fuentes, que pueden incluir bases de datos, hojas de cálculo, archivos planos o aplicaciones empresariales. La complejidad de esta fase radica en la capacidad de conectarse a sistemas heterogéneos y manejar diferentes formatos de datos. El objetivo principal es obtener todos los datos relevantes independientemente de su origen o estructura inicial.

En la fase de transformación los datos se limpian, lo que implica corregir errores, eliminar duplicados y manejar valores faltantes. Además, se aplican filtros para seleccionar solo la información relevante y se realizan conversiones para estandarizar formatos.

La fase final del proceso ETL es la carga. En esta etapa, los datos ya transformados se introducen en un sistema de destino, que suele ser un almacén de datos centralizado como un data warehouse. La carga puede realizarse de diferentes maneras, ya sea reemplazando completamente los datos existentes, añadiendo solo la información nueva o actualizada, o incluso en tiempo real para mantener los datos constantemente actualizados.

Cuándo se debe de usar

Los procesos ETL son especialmente útiles en situaciones en las que los datos deben integrarse de diferentes fuentes para su análisis y uso en sistemas de información empresarial.

Algunos ejemplos podrían ser:

  • Integración de datos de diferentes departamentos o divisiones de una empresa.

  • Consolidación de datos de diferentes sistemas o aplicaciones.

  • Creación de una visión global de los datos para el análisis de negocios.

  • Preparación de datos para su uso en análisis predictivos y modelos de inteligencia artificial.

Importancia del Big Data en los procesos ETL

El Big Data es importante en los procesos ETL debido a los siguientes motivos:

  • Volumen: El volumen de datos que manejan las empresas hoy en día es abrumador. El Big Data permite a los procesos ETL gestionar eficientemente cantidades masivas de información que serían inmanejables con métodos tradicionales.

  • Variedad: El Big Data en los procesos ETL facilita la integración de datos estructurados, semi-estructurados y no estructurados provenientes de diversas fuentes. Esta diversidad de datos enriquece el análisis y proporciona una perspectiva más holística del negocio.

  • Velocidad: Los sistemas de Big Data procesan datos en tiempo real o casi real, lo que significa que los procesos ETL pueden manejar flujos continuos de información.

  • Mejora de la toma de decisiones: Al tener acceso a datos más completos, variados y actualizados, los directivos pueden basar sus decisiones en información más precisa.

  • Competitividad: La integración del Big Data en los procesos ETL impulsa la competitividad de las empresas y les aporta más agilidad para responder con rapidez a los cambios del mercado, así como personalizar y optimizar sus productos y servicios.

Herramientas ETL actuales

Existen muchas herramientas ETL en el mercado. Algunas de las más populares actualmente son:

  • Apache Nifi: Solución ETL que permite automatizar el flujo de datos entre sistemas. Permite diseñar, controlar y monitorizar flujos de datos complejos con una interfaz visual.

  • Talend Data Fabric: Plataforma que abarca no solo ETL, sino también integración de aplicaciones, calidad de datos y gobernanza de datos.

  • Informatica PowerCenter: Una solución ETL empresarial que ofrece una amplia gama de funciones para la integración de datos, incluyendo la integración con Big Data.

  • Microsoft SQL Server Integration Services (SSIS): Una de sus principales fortalezas radica en su perfecta integración con otros servicios de Microsoft, como Azure y Power BI

  • Google Cloud Data Fusion: Esta plataforma ofrece un enfoque visual y altamente intuitivo para el diseño y la implementación de pipelines de datos.

  • AWS Glue: En el ámbito de Amazon Web Services, AWS Glue se posiciona como una solución ETL serverless y totalmente administrada.

Compartir en:

Artículos relacionados

Applets

Un applet es un pequeño programa que se ejecuta dentro de otra aplicación, generalmente en un navegador web, con el objetivo de proporcionar funcionalidades interactivas sin necesidad de instalación adicional. Durante años, los applets en Java fueron una de las formas más populares

Target blank

El atributo target=»_blank» es una propiedad del lenguaje HTML (HyperText Markup Language), utilizada dentro de las etiquetas de enlace (<a>), que indica al navegador que el destino del vínculo debe abrirse en una nueva pestaña o ventana.  Esta funcionalidad es especialmente útil cuando

Defragmentar

Desfragmentar es el proceso mediante el cual los archivos almacenados en un disco duro (HDD) se reorganizan para optimizar el rendimiento del sistema.   Con el tiempo, los archivos en un disco se fragmentan, es decir, se dividen en múltiples partes dispersas a lo

Open Map Bump

El término Open Map Bump se refiere a una técnica ampliamente utilizada en gráficos por computadora para simular detalles superficiales en una textura sin incrementar la complejidad geométrica de un modelo 3D. Es una evolución del clásico bump mapping, que utiliza mapas de

Scroll al inicio