Pipeline

Tabla de contenidos

Resumir con:

En informática, una tubería o pipeline, también conocida como canalización de datos, es una serie de elementos de procesamiento de datos conectados en serie, donde la salida de un elemento es la entrada del siguiente. Los elementos de una tubería se ejecutan a menudo de forma paralela o en tiempos compartidos. A menudo se inserta una cantidad de almacenamiento de búferes entre elementos. 

Explicación simple de qué es una pipeline

El concepto de tubería se utiliza comúnmente en la vida cotidiana. Por ejemplo, en la línea de ensamblaje de una fábrica de automóviles, cada tarea específica, como instalar el motor, el capó y las ruedas, se realiza a menudo en una estación de trabajo separada. Las estaciones realizan sus tareas en paralelo, cada una en un automóvil diferente. 

Una vez que se ha realizado una tarea en un automóvil, se mueve a la siguiente estación. Las variaciones en el tiempo necesario para completar las tareas se pueden acomodar mediante amortiguación (retención de uno o más automóviles en un espacio entre las estaciones) y/o mediante el uso de elementos flexibles como el trabajo en paralelo. 

¿Cómo se diseñan las pipelines?

El diseño de una tubería se basa en varios factores, como la latencia, el ancho de banda y la tasa de ejecución de los elementos individuales. El objetivo es maximizar la eficiencia general del sistema al reducir al mínimo la latencia total y el uso del ancho de banda mientras se mantiene una alta tasa de ejecución. 

Tuberías en hardware 

Las tuberías son ampliamente utilizadas en la arquitectura de hardware de los procesadores, como CPU y GPU. Las instrucciones se dividen en varias etapas, como decodificación, ejecución y escritura en memoria, que se ejecutan en paralelo en diferentes unidades funcionales del procesador. Esto aumenta la eficiencia y la velocidad de ejecución de las instrucciones. 

Tuberías en software 

En el desarrollo de software, las tuberías se utilizan para automatizar el flujo de trabajo de un proyecto, desde la integración continua, pruebas automatizadas y despliegue. Esto facilita la colaboración y la eficiencia entre los equipos de desarrollo. 

Tipos de tuberías de datos 

Existen diferentes tipos de tuberías de datos según su uso y procesamiento: 

  • Tuberías de procesamiento por lotes: Se utilizan principalmente para casos de uso de análisis tradicionales, donde los datos se recopilan, transforman y se mueven periódicamente a un almacén de datos en la nube para funciones empresariales y casos de uso de inteligencia empresarial convencionales. 

  • Tuberías de procesamiento en tiempo real: Se utilizan para casos de uso que requieren un procesamiento y un análisis de datos en tiempo real, como la monitorización de redes sociales o las aplicaciones de IoT. 

  • Tuberías de integración de datos: Se utilizan para combinar datos de diferentes orígenes en un solo conjunto de datos coherente, como la combinación de datos de bases de datos relacionales y no relacionales. 

Pipelines de aprendizaje automático 

  • Tuberías de aprendizaje supervisado: Se utilizan para entrenar modelos de aprendizaje automático basados en datos etiquetados. Las etiquetas se utilizan para proporcionar información al algoritmo sobre la clase o la categoría a la que pertenecen los datos de entrenamiento. 

  • Tuberías de aprendizaje no supervisado: Se utilizan para entrenar modelos de aprendizaje automático basados en datos no etiquetados. El algoritmo debe descubrir las estructuras o patrones subyacentes en los datos sin ninguna información adicional proporcionada. 

  • Tuberías de aprendizaje por refuerzo: Se utilizan para entrenar modelos de aprendizaje automático mediante la interacción con un entorno. El algoritmo recibe comentarios en forma de recompensas o penalizaciones a medida que explora y aprende cómo interactuar con el entorno. Un tipo de aprendizaje por refuerzo muy popular es el Q-learning.

Herramientas y plataformas de tuberías de datos 

Existen varias herramientas y plataformas populares que ayudan a implementar y gestionar tuberías de datos, como Apache Hadoop, Apache Spark, Apache Flink, Apache Kafka, Apache Airflow, Kubernetes y AWS Data Pipeline, entre otros. 

Te proponemos las siguientes formaciones relacionadas:

Compartir en:

Artículos relacionados

Minería de datos

La minería de datos o data mining es un proceso clave en el ámbito de la tecnología, desarrollo y programación que implica la extracción de patrones valiosos y conocimientos significativos a partir de conjuntos masivos de datos. Este proceso va más allá de

LLM

¿Qué es LLM? Los Modelos Grandes de Lenguaje (LLM, Large Language Models) son una clase de modelos de inteligencia artificial diseñados para comprender, procesar y generar lenguaje natural. Estos modelos se basan en redes neuronales profundas y se entrenan en grandes conjuntos de

Contenedor

Un contenedor es una tecnología de virtualización que permite empaquetar y distribuir una aplicación junto con todas sus dependencias (código, herramientas del sistema, librerías, ajustes de configuración) en un entorno aislado y portátil. Es decir, un contenedor incluye todo lo necesario para que

Hash

Un hash es una función matemática que toma una entrada (como un archivo, un mensaje o cualquier tipo de dato) y devuelve una cadena de caracteres alfanuméricos de longitud fija, que representa de manera única esa entrada. Dicho de forma simple, es como

Scroll al inicio